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A Multiscale Model for the Effective Thermal
Conductivity Tensor of a Stratified Composite
Material1

J.-M. Goyhénèche2,3 and A. Cosculluela2

Thermal modeling of composites has three essential objectives: (i) compre-
hension of their thermal behavior; (ii) composite scaling in order to satisfy
specific requirements; and (iii) optimal analysis of experimental results from
thermal characterization. For a complete study of the material, each of these
three points must be taken into account at the fiber scale (≈10µm), the
yarn scale (≈ 1 mm), and the composite scale (≈ 10 cm). This work presents
multi-scale modeling of the effective thermal conductivity tensor of a strat-
ified composite material made from carbon fibers, phenolic resin, and car-
bon loads. The longitudinal and transverse thermal conductivities of the yarn
are computed from optical microscopic imaging of the material. The isotro-
pic thermal conductivity of the loaded matrix is computed by the Brugg-
eman model. Then, the thermal conductivity tensor is determined by a finite
element method taking into account the morphology of the fabric. Com-
puted values are close to experimental values measured by classical methods.
Finally, analytical relations are proposed to obtain an efficient model which
can be used in a multiphenomenon simulation of the composite structure.

KEY WORDS: composite material; effective property; heat transfer; specific
heat; thermal conductivity.

1. INTRODUCTION

Woven-fabric/polymer matrix composites have been extensively stud-
ied because of the relative ease and low cost of their manufacturing. Many
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industrial issues are due to their very good specific mechanical properties.
However, for thermal protection applications, charring ablators are most
widely used. Phenolic, epoxy, or silicon resins with glass or carbon fibers
are generally used. In this case, the thermal properties of the composites
are very important.

The purpose of this paper is to describe one example of modeling
of the effective density, effective specific heat, and effective thermal con-
ductivity tensor of a carbon woven-fabric/phenolic matrix composite. The
strategy is to take into account the measured properties of each constit-
uent (fibers, matrix, fillers) and the woven-fabric of the composite. Both
analytical and numerical approaches are described. The measured data
used in the different models and the computation results are presented.
Then the difference between these results and experimental data on the
composites is discussed.

2. EXPERIMENTAL DATA FOR THE COMPOSITE AND ITS
CONSTITUENTS

2.1. Morphological Characteristics of the Composite Material

The material under consideration is made from base rayon carbon fibers
(Fig. 1, medium diameter: d = 12 µm; volumetric fraction: αf ,C = 0.42) and
phenolic resin matrix. Carbon loads (volumetric fraction: αl,C = 0.06) are
imbedded into the inter-yarn matrix, but not into the intra-yarn matrix.
The porosity (ε=0.02) is uniformly distributed into the material. The yarns,
identical for chain and weft directions (720 fibers per yarn, volumetric frac-
tion of fibers into the yarn: αf ,Y = 0.6), are woven in order to make plies
of satin 8/3 (Fig. 2). These plies are then put on top of each other, without
disorientation, to constitute the stratified composite.

2.2. Thermophysical Properties of the Constituents

The density of the fibers, the resin, and the loads: ρf = 1800 kg ·
m−3, ρr = 1300 kg · m−3, and ρl = 2200 kg · m−3, are measured by helium
pycnometry (commercial apparatus: Accupyc1330, Micromeritics) with an
uncertainty less than 3%. The thermal conductivities (longitudinal: λf ,L =
6 W · m−1 · K−1 and transverse: λf ,T = 1.6 W · m−1 · K−1) of the fibers are
obtained from thermal diffusivity measurements, at room temperature, by a
photothermal microscopy method [1]. These very difficult measurements are
performed with an estimated uncertainty of 20%. The thermal conductivity
of the resin, λr =0.4 W ·m−1 ·K−1, is also determined from diffusivity mea-
surements realized on a bulk sample by the flash method [2]. The thermal
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Fig. 1. Rayon-based carbon fiber.

Fig. 2. Composite material under consideration in this work. Chain
yarns cross-sections and weft yarns in horizontal direction.

conductivity of the loads, λl =100 W ·m−1 ·K−1, is equally determined from
diffusivity measurements on loaded matrix samples at various concentra-
tions. This high conductivity value is the consequence of a very high tem-
perature treatment realized on the carbon loads. These measurements are
performed with a large uncertainty of 20%. Finally, the specific heat of
carbon fibers, phenolic resin, and carbon loads are obtained by differential
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scanning calorimetry (commercial apparatus: DSC, Setaram) with an esti-
mated uncertainty of 10%: cf =750 J ·kg−1 ·K−1, cl =1050 J ·kg−1 ·K−1, and
cr =600 J · kg−1 ·K−1.

2.3. Thermophysical Properties of the Composite Material

The thermophysical properties of the composite are determined with
the same techniques. The density, ρc = 1490 kg·m−3 is measured with an
uncertainty of 3%. The thermal conductivities, λc,|| = 1.81 W·m−1·K−1 in
the parallel direction and λc,⊥ = 1.16 W· m−1·K−1 in the perpendicular
direction, are determined from diffusivity measurements with an uncer-
tainty of 10%. Finally, the specific heat, cc = 900J· kg−1·K−1 is measured
by DSC with an uncertainty of 10%.

3. ANALYTICAL MODEL FOR THE EFFECTIVE
THERMOPHYSICAL PROPERTIES

3.1. Volumetric Fractions

The volumetric fraction of the fibers into the yarns, αf ,Y = 0.60, is
obtained by analysis of yarn crosssection photographs. Consequently, the
volumetric fraction of the resin into the yarns is simply determined by:
αr,Y =1−αf ,Y =0.40. The volumetric fraction of the loads into the matrix
is also determined using algebrical relations between the volumetric frac-
tions of all the constituents:

αl,M = αl,C

1− αf ,C
αf ,Y

− ε
(1)

or numerically: αl,M = 0.21. Consequently, the volumetric fraction of the
resin into the loaded matrix is simply determined by: αr,M =1−αl,M =0.79,
the volumetric fraction of the resin into the composite by: αr,C =1−αf ,C −
αl,C − ε = 0.50, the volumetric fraction of the yarns into the composite by:
αY,C = αf ,C/αf ,Y = 0.70, and the volumetric fraction of the loaded matrix
into the composite by: αM,C =1−αY,C − ε =0.28.

3.2. Effective Density of the Composite

The effective density of a material composed of N constituents of vol-
umetric fraction αi is given by: ρ = ∑N

i=1 αiρi . Using this definition to
determine the effective density of the yarns and the loaded matrix, the
effective density of the composite is given by
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ρC =αY,C(αf ,Yρf +αr,yρr)+αM,C(αl,Mρl +αr,Mρr) (2)

or numerically: ρC =1538 kg ·m−3.

3.3. Effective Specific Heat of the Composite

The effective specific heat of a material composed of N constitu-
ents of volumetric fraction αi is given by: c = ∑N

i=1 αiρici/
∑N

i=1 αiρi .
Using this definition to determine the effective specific heat of the yarns
and the loaded matrix, the effective specific heat of the composite is
given by

cC = αY,C(αf ,Yρf cf +αr,Yρrcr)+αM,C(αl,Mρlcl +αr,Mρrcr)

αY,C(αf ,Yρf +αr,Yρr)+αM,C(αl,Mρl +αr,Mρr)
(3)

or numerically: cc =864 J ·kg−1 ·K−1.

4. NUMERICAL MODEL FOR THE EFFECTIVE THERMAL
CONDUCTIVTY TENSOR

4.1. Effective Longitudinal and Transverse Thermal Conductivities of the
Yarns

The fibers being aligned in the yarns, their effective longitudinal
thermal conductivity is simply determined by a parallel model:

λY,L =αf ,Yλf ,L +αr,Yλr (4)

or numerically: λY,L =3.76 W ·m−1 · K−1. The effective transverse thermal
conductivity can be determined by several methods [3]. A range for this
property is given by the Hashin–Shtriktman model [4]: 0.85 < λY,T <

0.98 W · m−1 · K−1, whereas the Rayleigh [5] and Bruggeman [6] mod-
els can also be used to provide approximate values: λY,T = 0.85 W · m−1 ·
K−1 and λY,T = 0.89 W · m−1 · K−1. Moreover, the cross-section photo-
graphs used to determine the volumetric fraction of the fibers into the
yarns can be used to compute their effective transverse thermal conduc-
tivity by a direct method. In this method, a “hot” temperature TH = 1 is
imposed on one boundary of the medium, a “cold” temperature TC =0 is
imposed on the opposite boundary, and an isolation condition is imposed
on the other two boundaries (Fig. 3), in order to compute the tempera-
ture field in the material and to deduce the effective conductivity by the
relation,
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Fig. 3. Determination of the effective transverse thermal
conductivity of the yarns by direct method using yarn
cross-section photographs.

λ= �e

TH −TC
(5)

where � represents the heat flow and e is the distance between the
imposed temperature boundaries. Using this method, the transverse ther-
mal conductivity of the yarn can be evaluated: λY,T = 0.89 W · m−1 · K−1.
Finally, the direct method can also be applied on regular arrays of cylin-
ders (Fig. 4) [7]. These computations lead, for a square array,to: λY,T =
0.86 W ·m−1 ·K−1, and for a hexagonal array,to: λY,T =0.85 W ·m−1 ·K−1.
All the values computed for the effective transverse thermal conductivity
of the yarns are very close. For its simplicity, the Bruggeman model has
been chosen to calculate λY,T:

λY,T=λr

(
1−αf ,Y

)2
(

λf ,T
λr

−1
)2+ 2λf ,T

λr
−

√[
(
1−αf ,Y

)2
(

λf ,T
λr

−1
)2+ 2λf ,T

λr

]2

−
(

2λf ,T
λr

)2

2
(6)

This relation leads to: λY,T =0.89 W ·m−1 ·K−1.

4.2. Effective Thermal Conductivity of the Loaded Matrix

The volumetric fraction of loads being relatively low (αl,M =0.21), the
effective thermal conductivity of the loaded matrix can be determined by
the Maxwell–Eucken model [8] to a good approximation:
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Fig. 4. Determination of the effective transverse thermal conductivity of
the yarns by direct method using regular arrays of cylinders.

λM =λr

1+2αl,M
1− λr

λch

1+2 λr
λch

1−αl,M
1− λr

λch

1+2 λr
λch

(7)

This relation leads to: λM =0.72 W ·m−1 ·K−1.

4.3. Effective Thermal Conductivity Tensor of the Composite

The calculation of the effective thermal conductivity of the compos-
ite is realized in two steps. First, the material is assumed to be non-
porous. Then, the volumetric fraction of yarn in the composite becomes:
ᾱY,C = αY,C/(1 − ε) = 0.71. The thermal conductivity tensor is deter-
mined by the direct method applied on a periodic pattern of the ply
(Fig.5). The morphology (yarn cross section and yarn spacing) of the lat-
est is determined in order to represent the real material and to corre-
spond with the volumetric fraction of the yarns into the composite. The
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Fig. 5. Determination of the effective thermal conductivity tensor of the
composite by direct method applied on one periodic pattern of the ply.

thermal problem is solved by the finite element method (Software CAST3M,
CEA, France). The temperature difference TH −TC is successively applied
along the three directions. From these three numerical experiments, the
effective thermal conductivity tensor of the composite is computed by the
relation [9],

λi,j = 〈�i〉
〈
∂T /∂xj

〉 (8)

where 〈�i〉 represents the mean heat flow parallel to the xi direction and〈
∂T /∂xj

〉
is the mean temperature gradient in the xj direction.

Finally, the material is assumed to be porous. The porosity being low
(ε = 0.02), the Maxwell model [10] provides a good approximation of the
effective composite thermal conductivities:

λC,‖ = λ̄C,‖2
1− ε

2+ ε
λC,⊥ = λ̄C,⊥2

1− ε

2+ ε
(9)

These relations lead to: λC,‖= 1.78 W · m−1 · K−1 and λC,‖= 0.81 W · m−1 ·
K−1.
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5. ANALYTICAL MODEL FOR THE EFFECTIVE THERMAL
CONDUCTIVITY TENSOR

The model developed in the previous section uses analytical rela-
tions to compute the effective thermal conductivities of the yarns and the
loaded matrix, and numerical relations to compute the effective thermal
conductivity tensor of the composite. The objective of this section is to
propose approximate analytical models to compute the effective thermal
conductivity tensor of the composite.

5.1. Effective Thermal Conductivity in the Direction Parallel to Ply

First, the material is assumed to be nonporous. The ply is divided
into two parts: one containing the yarns parallel to the chain direction,
and the other containing the yarns parallel to the weft direction. The ther-
mal conductivity of the first part, in the direction parallel to the chain
yarns, is called λ1, and that of the second part is called λ2. The thermal
conductivity λ1 can be evaluated by a parallel model,

λ1 = ᾱY,CλY,L + (1− ᾱY,C)λM (10)

whereas the conductivity λ2 can be evaluated by a serial model,

λ2 = λrλY,T

ᾱY,CλM + (1− ᾱY,C)λF,T
(11)

The association of both parts in a parallel scheme provides the effective
thermal conductivity of the nonporous composite material:

λ̄C,‖ = 1
2

[

ᾱY,CλY,L + (1− ᾱY,C)λM + λMλY,T

ᾱY,CλM + (1− ᾱY,C)λY,T

]

(12)

Then, using the Maxwell model [10], the effective thermal conductivity of
the porous composite material is given by

λC,‖=1− ε

2+ε

[

ᾱY,CλF,L+(1−ᾱY,C)λM + λMλY,T

ᾱY,CλM + (1− ᾱY,C)λY,T

]

(13)

These relations lead to: λC,‖ =1.82 W ·m−1 ·K−1

5.2. Effective Thermal Conductivity in the Direction Perpendicular to Ply

At the beginning, the material is again assumed to be nonporous.
The ply is divided into two parts: one containing the yarns parallel to the
chain direction, and the other containing the yarns parallel to the weft
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direction. Considered in the direction perpendicular to the ply, both parts
have the same thermal conductivity: λ̄C,⊥, which can be evaluated by a
parallel model,

λ̄C,⊥ = ᾱY,CλY,T + (1− ᾱY,C)λM (14)

Then, using the Maxwell model [10], the effective thermal conductivity of
the porous composite material is given by

λC,‖ = 1− ε

2+ ε

[
ᾱY,CλY,T + (1− ᾱY,C)λM

]
(15)

These relations lead to: λC,‖ =0.82 W ·m−1 ·K−1.

6. DISCUSSION

The data of the problem (morphological characteristics and proper-
ties of the composite materials) are indicated with associated uncertainties
in the first section. These uncertainties on the data lead to uncertainties
on the results. For each calculated property, both lower and upper values
are computed in order to determine the mean value and uncertainty range
(Table I). The bounds of the range are calculated for a minimization or a
maximization of the property value due to data uncertainties. For exam-
ple, a lower value of the composite density is obtained for lower values of
constituent densities and volumetric fractions, and a higher value of poros-
ity. As a consequence, the mean value of the uncertainty range may be a
bit different from the nominal value calculated in the previous section.

The mean value calculated for the density is a good estimation of the
measured value. Nevertheless, due to the relative errors accumulation, the
uncertainty attached to this result is twice the measured one. The mean
value calculated for the specific heat is also a good estimation of the

Table I. Numerical Results with Absolute Uncertainties

Effective property Numerical Analytical
of the composite material Measurement model model

Density, ρc(kg ·m−3) 1490 ± 45 – 1510 ± 89
Specific heat, cc (J·kg−1 ·K−1) 900 ± 90 – 872 ± 105
Thermal conductivity parallel 1.81 ± 0.18 1.78 ± 0.38 1.82 ± 0.39
to ply, λc,‖ (W·m−1 ·K−1)
Thermal conductivity perpendicular 1.16 ± 0.12 0.81 ± 0.13 0.81 ± 0.13
to ply, λc,⊥ (W·m−1 ·K−1)
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measured value, with a similar uncertainty. For the effective thermal con-
ductivity parallel to ply, the three mean values are similar; the analytical
model value is very close to the measured value. Once again, the uncer-
tainties attached to the numerical results are twice that of the measured
values.

Finally, for the effective thermal conductivity perpendicular to ply,
both mean numerical results are close together but are also lower than the
measured value. This difference indicates that the modelled material has a
smaller thermal conductivity than the real material. In both analytical and
numerical models, as in the real material, the effective longitudinal thermal
conductivity of the yarn has very little influence on the effective thermal
conductivity perpendicular to the ply; the periodic pattern indicates a few
intertwines between chain and weft yarns. This behavior is also observed
in the mechanical studies of composite materials [11]. So, the effective
thermal conductivity perpendicular to the ply mainly depends on the effec-
tive transverse thermal conductivity of the yarns, on the effective thermal
conductivity of the loaded matrix, and on the thermal contact between
these elements. In both models, the thermal contact between yarns and
loaded matrix is assumed to be perfect. Thus, it cannot limit the heat
transfer across the material. The relatively small volumetric fraction of the
loads in the matrix involves an increase of the resin thermal conductivity
but the effective thermal conductivity obtained (λM = 0.72 W · m−1 · K−1)
may not exceed 0.8 − 0.9W · m−1 · K−1. As a consequence, the difference
observed between calculated and measured values of λC,⊥ is mainly attrib-
uted to a lower transverse effective thermal conductivity of yarns (λY,T =
0.89 W ·m−1 ·K−1). This thermal conductivity is calculated with six differ-
ent models (Section 4.1) that provide similar numerical values (from 0.85
to 0.89W ·m−1 ·K−1). Since the thermal conductivity of the resin and the
volumetric fraction of fibers into the yarns are better known than the ther-
mal properties of the fiber, it may be concluded that the transverse thermal
conductivity of the fiber is probably lower than its true value.

7. CONCLUSION

Both analytical and numerical models have been developed in order
to compute the effective density, effective specific heat, and effective ther-
mal conductivity tensor of a composite material. These models were used
to calculate the thermophysical properties of a satin 8/3 stratified compos-
ite. Good agreement was obtained for all the predicted properties except
for the effective thermal conductivity in the perpendicular to ply direction.
A discussion has then showed that the difference observed between calcu-
lated and measured values may be mainly attributed to a lower transverse
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thermal conductivity of the yarns or, consequently, of the fibers. This
problem will be studied by the thermal characterization of impregnated
yarns in future work.
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which provides all the experimental data of this study.

REFERENCES

1. J. Jumel, F. Lepoutre, J. P. Roger, G. Neuer, M. Cataldi, and F. Enguehart, Rev. Sci.
Instrum. 74:537 (2002).

2. A. Degiovanni, Revue Générale de Thermique 185:420 (1977).
3. M. Kaviany, Principles of Heat Transfer in Porous Media (Springer, Berlin, 1995).
4. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33:3125 (1962).
5. L. Rayleigh, Phil. Mag. 34:481 (1892).
6. D. Bruggeman, Ann. Phys. 24:636 (1935).
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